

Geodesy 1B (GED209) Lecture No: 8

Types of Conditions in Triangulation Networks

Ali ELSAGHEER, Mohamed FREESHAH, Reda FEKRY

reda.abdelkawy@feng.bu.edu.eg

CONTENTS

- What is meant by conditions?
- Types of conditions
- Different methods to compute internal conditions
- Examples

What is a condition in control survey?

• A condition means

Please follow the board

External Conditions

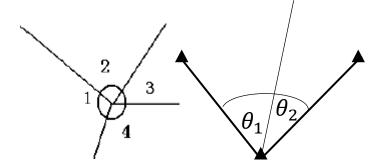
> Scale

The computed length of a side must equal its known length or differ by a value within tolerance.

Orientation

The computed azimuth of a side must equal its known azimuth or differ by a value within tolerance.

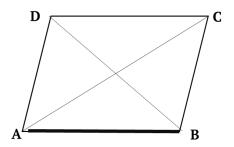
> Position


The computed coordinates of a point must equal its known coordinates or differ by a value within tolerance.

Internal (Geometric) Conditions

> Local condition

The sum of angles taken at certain station should equal a pre-specified value.



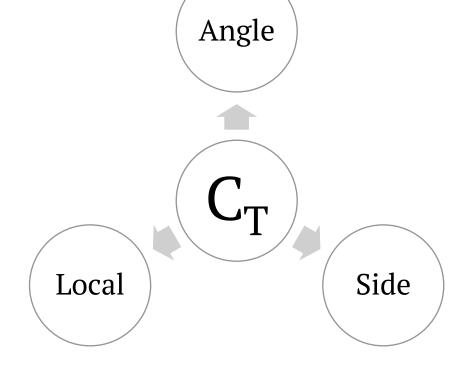
> Side condition

The length of a side should equal specific value whatever the route used in calculation.

> Angle / Triangle condition

The sum of the internal angles of a polygon should equals $(n-2) \times 180^{\circ} + \varepsilon$

How to calculate the number of different types of internal conditions?


 \triangleright The total number of geometric conditions C_T in a figure is:

 $C_T = O_T - O_{nec.}$

Where:

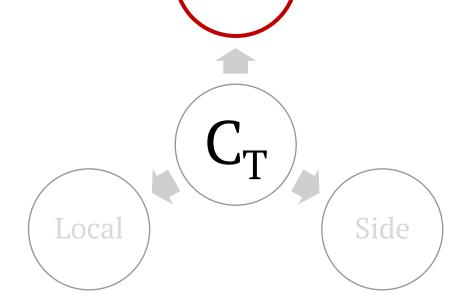
 O_T Total number of observations

 $O_{nec.}$ Number of necessary observations

(1) Angle Conditions

 \triangleright The total number of geometric conditions C_A in a figure is:

$$C_A = (L - L') - (S - S') + 1$$



L..... Total number of lines.

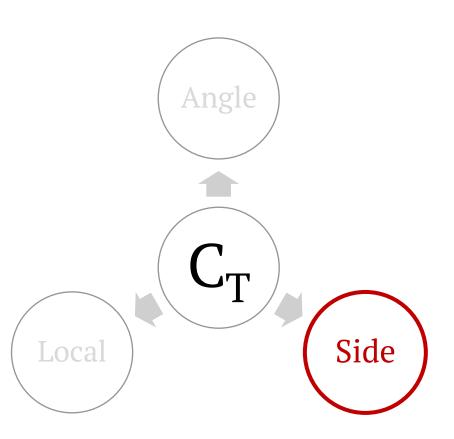
L' Number of lines observed in one direction.

S Total number of stations.

S' Number of unoccupied stations.

Angle

(2) Side Conditions


 \triangleright The total number of side conditions C_S in a figure is:

$$C_S = L - 2S + 3$$

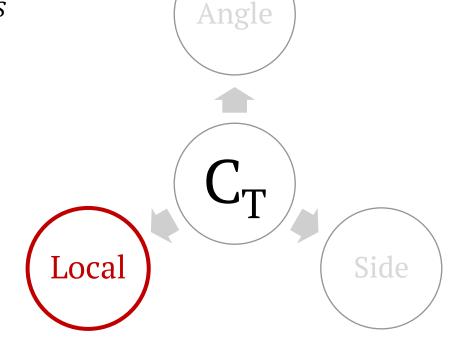
Where:

L Total number of lines.

S Total number of stations.

(3) Local Conditions

The total number of Local conditions C_{Local} in a figure is:


$$C_{Local} = C_T - C_A - C_S$$

 C_T Total number of conditions.

 C_A Total number of angle conditions.

 $C_{\rm S}$ Total number of side conditions.

(1) By Law – Example

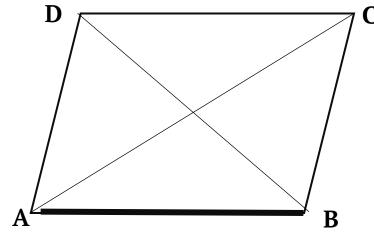
Calculate the number of different types of internal conditions in the following braced quadrilateral.

Known points = 2 (baseline)

New points = 2(C, D)


Total number of observation O_T = 8

Number of necessary observations O_{nec} = 2 × new points = 2 × 2 = 4

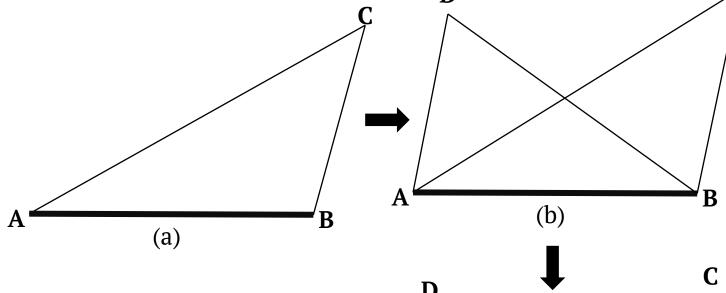

Total number of conditions $C_T = O_T - O_{nec} = 8 - 4 = 4$

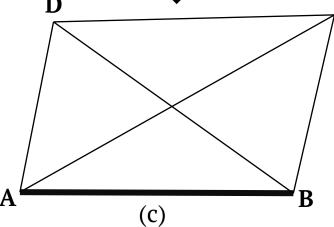
Number of triangle conditions $C_A = (L - L') - (S - S') + 1$

$$= (6-0) - (4-0) + 1 = 3$$

Number of local conditions $C_{Local} = C_T - C_A - C_S = 4 - 3 - 1 = 0$

(2) Point By Point


(2) Point By Point

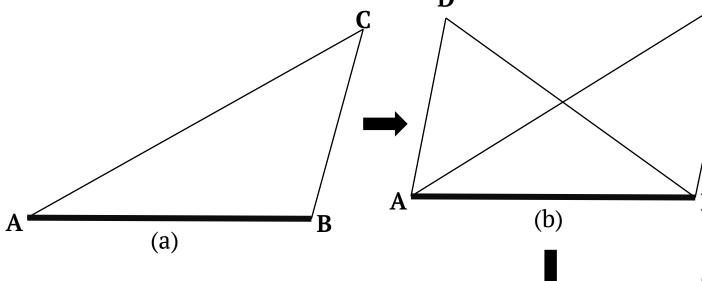

Calculate the number of different types of internal conditions in the following braced

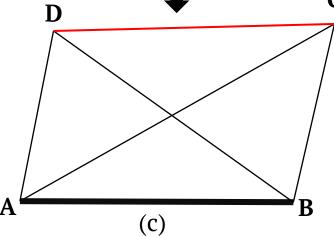
quadrilateral.

Point	C _A	C _s
A	-	-
В	-	-
С	2 -1 = 1	2 - 2 = 0
D	3 -1 = 2	3 - 2 = 1
Total	3	1

Number of local conditions $C_{Local} = C_T - C_A - C_S = 4 - 3 - 1 = 0$

(3) Triangle By Triangle


(3) Triangle By Triangle


Calculate the number of different types of internal conditions in the following braced

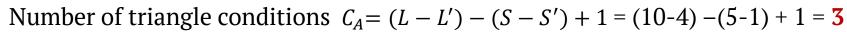
quadrilateral.

Triangle	$\mathbf{C}_{\mathbf{A}}$	$\mathbf{C_s}$
ABC	1	0
ABD	1	0
CD	1	1
Total	3	1

Number of local conditions $C_{Local} = C_T - C_A - C_S = 4 - 3 - 1 = 0$

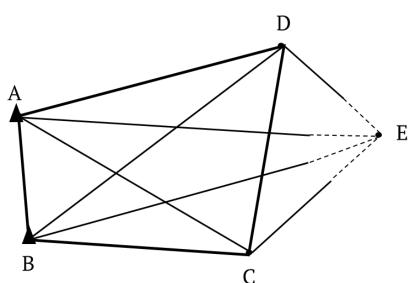
Which method should be used?

(1) Calculate the number of different types of geometric conditions in the following figure:


Known points = 2 (baseline)

New points = 3(C, D, E)

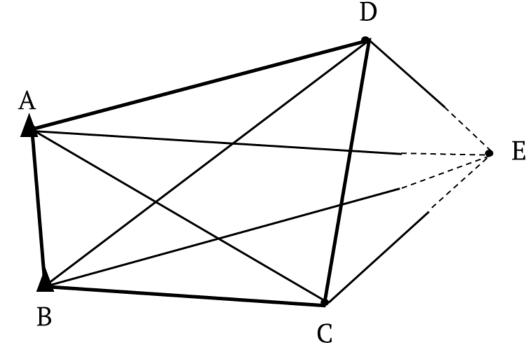
Total number of observation $O_T = 12$


Number of necessary observations $O_{nec} = 2 \times new \ points = 2 \times 3 = 6$

Total number of conditions $C_T = O_T - O_{nec} = 12 - 6 = 6$

Number of side conditions $C_S = L - 2S + 3 = 10 - 10 + 3 = 3$

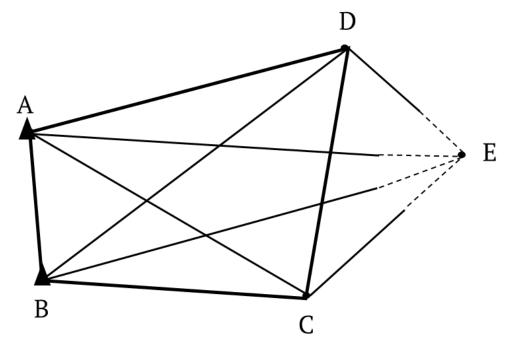
Number of local conditions $C_{Local} = C_T - C_A - C_S = 6 - 3 - 3 = 0$



(1) Calculate the number of different types of geometric conditions in the following figure:

Point by point

Point	$\mathbf{C}_{\mathbf{A}}$	C _s
A	-	-
В	-	-
С	2 -1 = 1	2 - 2 = 0
D	3 -1 = 2	3 - 2 = 1
Е	0	4 -2 = 2
Total	3	3


Number of local conditions $C_{Local} = C_T - C_A - C_S = 6 - 3 - 3 = 0$


(1) Calculate the number of different types of geometric conditions in the following figure:

Triangle by triangle

Triangle	$\mathbf{C}_{\mathbf{A}}$	C _s
ABC	1	0
ACD	1	0
CDE	0	0
BD	1	1
EA	0	1
EB	0	1
Total	3	3

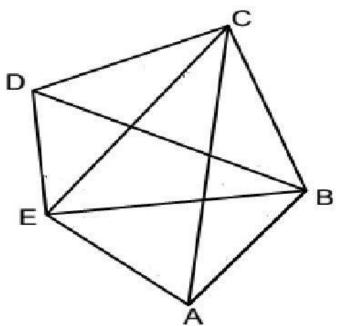
Number of local conditions
$$C_{Local} = C_T - C_A - C_S = 6 - 3 - 3 = 0$$

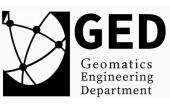
(2) Calculate the number of different types of geometric conditions in the following figure:

Known points = 2 (baseline)

New points = 3(C, D, E)

Total number of observation $O_T = 13$

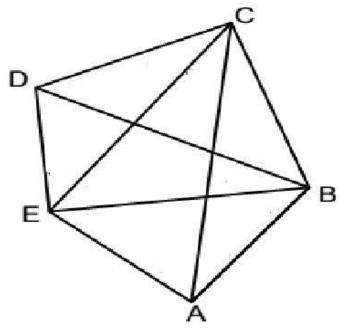

Number of necessary observations O_{nec} = 2 × new points = 2 × 3 = 6


Total number of conditions $C_T = O_T - O_{nec} = 13 - 6 = 7$

Number of triangle conditions $C_A = (L - L') - (S - S') + 1 = (9-0) - (5-0) + 1 = 5$

Number of side conditions $C_S = L - 2S + 3 = 9 - 10 + 3 = 2$

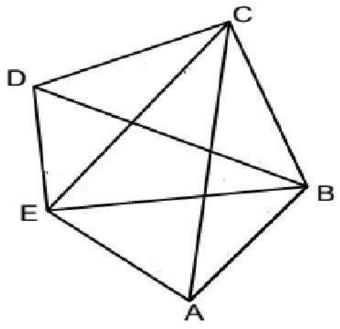
Number of local conditions $C_{Local} = C_T - C_A - C_S = 7 - 5 - 2 = 0$



(2) Calculate the number of different types of geometric conditions in the following figure:

Point by point

Point	$\mathbf{C}_{\mathbf{A}}$	C _s
A	ı	1
В	1	1
С	2 -1 = 1	2 - 2 = 0
D	2 -1 = 1	2 - 2 = 0
Е	4 -1 = 3	4 -2 = 2
Total	5	2


Number of local conditions $C_{Local} = C_T - C_A - C_S = 7 - 5 - 2 = 0$

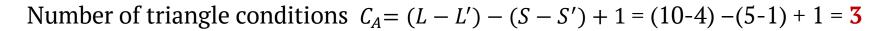
(2) Calculate the number of different types of geometric conditions in the following figure:

Triangle by triangle

Triangle	$\mathbf{C}_{\mathbf{A}}$	Cs
ABC	1	0
ABE	1	0
EBD	1	0
EC	1	1
ED	1	1
Total	5	2

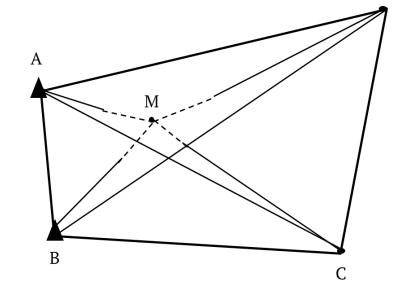
Number of local conditions $C_{Local} = C_T - C_A - C_S = 7 - 5 - 2 = \mathbf{0}$

(3) Calculate the number of different types of geometric conditions in the following figure:


Known points = 2 (baseline)

New points = 3(C, D, M)

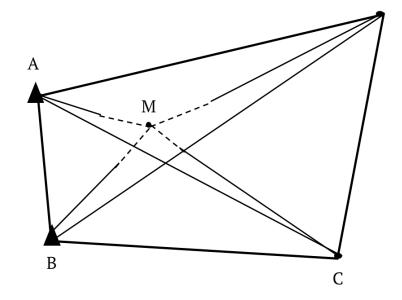
Total number of observation $O_T = 12$


Number of necessary observations O_{nec} = 2 × new points = 2 × 3 = 6

Total number of conditions $C_T = O_T - O_{nec} = 12 - 6 = 6$

Number of side conditions $C_S = L - 2S + 3 = 10 - 10 + 3 = 3$

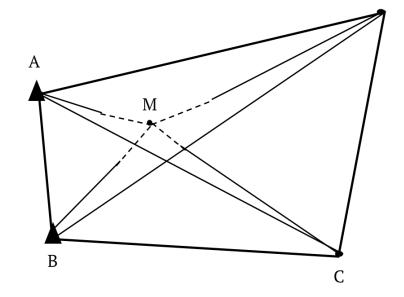
Number of local conditions $C_{Local} = C_T - C_A - C_S = 6 - 3 - 3 = 0$



(3) Calculate the number of different types of geometric conditions in the following figure:

Point by point

Point	$\mathbf{C}_{\mathbf{A}}$	$\mathbf{C}_{\mathbf{S}}$
A	-	-
В	-	-
С	2 -1 = 1	2 - 2 = 0
D	3 -1 = 2	3 - 2 = 1
M	0	4 -2 = 2
Total	3	3


Number of local conditions $C_{Local} = C_T - C_A - C_S = 6 - 3 - 3 = 0$

(3) Calculate the number of different types of geometric conditions in the following figure:

Triangle by triangle

Triangle	$\mathbf{C}_{\mathbf{A}}$	Cs
ABC	1	0
ABD	1	0
ABM	0	0
CD	1	1
MD	0	1
MC	0	1
Total	3	3

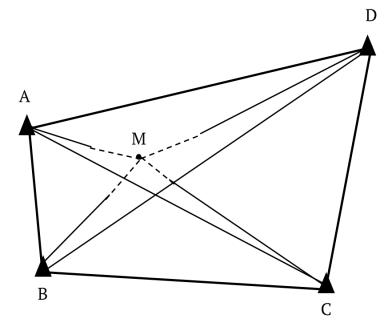
Number of local conditions
$$C_{Local} = C_T - C_A - C_S = 6 - 3 - 3 = \mathbf{0}$$

(4) Calculate the number of different types of geometric conditions in the following figure:

Known points = 2 (baseline)

New points = 1 (M)

Total number of observation $O_T = 12$

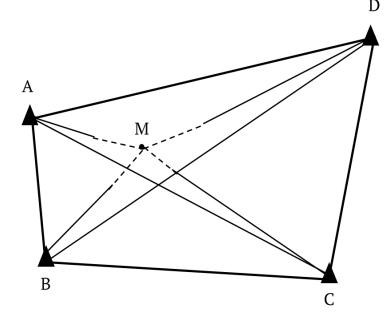

Number of necessary observations O_{nec} = 2 × new points = 2 × 1 = 2

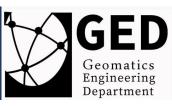

Total number of conditions $C_T = O_T - O_{nec} = 12 - 2 = 10$

Number of triangle conditions $C_A = (L - L') - (S - S') + 1 = (10-4) - (5-1) + 1 = 3$

Number of side conditions $C_S = L - 2S + 3 = 10 - 10 + 3 = 3$

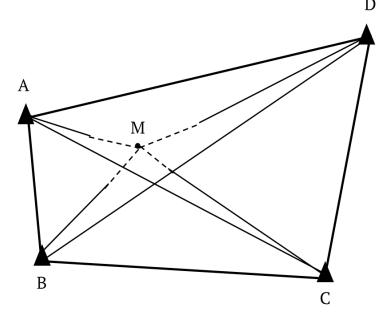
Number of local conditions $C_{Local} = C_T - C_A - C_S = 10 - 3 - 3 = 4$




(4) Calculate the number of different types of geometric conditions in the following figure:

Point by point

Point	$\mathbf{C}_{\mathbf{A}}$	Cs
A	-	-
В	-	-
С	2-1 = 1	2-2 = 0
D	3 -1 = 2	3-2 = 1
M	-	4 - 2 = 2
Total	3	3


Number of local conditions $C_{Local} = C_T - C_A - C_S = 10 - 3 - 3 = 4$

(4) Calculate the number of different types of geometric conditions in the following figure:

Triangle by triangle

Triangle	$\mathbf{C}_{\mathbf{A}}$	Cs
ABC	1	0
ABD	1	0
ABM	0	0
CD	1	1
MD	0	1
MC	0	1
Total	3	3

Number of local conditions $C_{Local} = C_T - C_A - C_S = 10 - 3 - 3 = 4$

End of Presentation

THANK YOU

